题目链接:SPOJ 16580
给定一棵 $n$ 个节点的树,每个点都有一个黑白颜色和一个点权 $w_i$。接下来进行 $m$ 次操作,操作分为如下 $2$ 种:
0 u
:询问和点 $u$ 相连的所有点中的最大点权,两个点 $u, v$ 是相连的当且仅当两者路径(包括 $u, v$)上的点颜色相同。1 u
:反转点 $u$ 的颜色(黑色变成白色,白色变成黑色)。2 u w
:将点 $u$ 的点权修改为 $w$。
数据范围:$1\le n, m\le 10 ^ 5$,$\vert w_i\vert \le 10 ^ 9$。
Solution
本题的套路和 SPOJ 16549(题解)相同,只不过需要维护连通块最大值罢了。又可以搬代码啦 QAQ
时间复杂度:$\mathcal O((n + m)\log n)$。
Code
#include <cstdio>
#include <algorithm>
#include <set>
const int N = 1e5 + 5, M = 2e5 + 5;
const int INF = 0x7f7f7f7f;
int n, m, tot, w[N], col[N], lnk[N], ter[M], nxt[M], fa[N];
struct Node;
Node *null;
struct Node {
Node *ch[2], *fa;
int idx, val, mx;
std::multiset<int> s;
Node(int _idx = 0, int _val = 0) {
ch[0] = ch[1] = fa = null;
idx = _idx, mx = val = _val;
s.clear();
}
bool get() {
return fa->ch[1] == this;
}
bool isroot() {
return fa->ch[0] != this && fa->ch[1] != this;
}
void pushup() {
mx = std::max(val, std::max(ch[0]->mx, ch[1]->mx));
if (!s.empty()) {
mx = std::max(mx, *s.rbegin());
}
}
};
struct LCT {
Node *a[N];
bool C;
void build(int n) {
a[0] = new Node(), a[0] = null;
for (int i = 1; i <= n; i++) {
a[i] = new Node(i, w[i]);
}
}
void rotate(Node *x) {
Node *y = x->fa, *z = y->fa;
int k = x->get();
!y->isroot() && (z->ch[y->get()] = x), x->fa = z;
y->ch[k] = x->ch[!k], x->ch[!k]->fa = y;
x->ch[!k] = y, y->fa = x;
y->pushup();
}
void splay(Node *x) {
while (!x->isroot()) {
Node *y = x->fa;
if (!y->isroot()) {
rotate(x->get() == y->get() ? y : x);
}
rotate(x);
}
x->pushup();
}
void access(Node *x) {
for (Node *y = null; x != null; x = (y = x)->fa) {
splay(x);
if (x->ch[1] != null) x->s.insert(x->ch[1]->mx);
if ((x->ch[1] = y) != null) x->s.erase(x->s.find(y->mx));
x->pushup();
}
}
Node *findroot(Node *x) {
access(x), splay(x);
while (x->ch[0] != null) x = x->ch[0];
splay(x);
return x;
}
void link(Node *x, Node *y) {
if (y == null) return;
access(y), splay(y), splay(x);
x->fa = y;
y->s.insert(x->mx);
y->pushup();
}
void cut(Node *x, Node *y) {
if (y == null) return;
access(x), splay(x);
x->ch[0] = x->ch[0]->fa = null;
x->pushup();
}
int query(Node *x) {
Node *f = findroot(x);
if (col[f->idx] == C) {
return f->mx;
} else {
return f->ch[1]->mx;
}
}
} T[2];
void add(int u, int v) {
ter[++tot] = v, nxt[tot] = lnk[u], lnk[u] = tot;
}
void dfs(int u, int p) {
for (int i = lnk[u]; i; i = nxt[i]) {
int v = ter[i];
if (v == p) continue;
fa[v] = u;
dfs(v, u);
}
}
void init() {
null = new Node();
null->ch[0] = null->ch[1] = null->fa = null;
null->mx = -INF;
T[0].build(n), T[0].C = 0;
T[1].build(n), T[1].C = 1;
for (int i = 1; i <= n; i++) {
int c = col[i];
T[c].link(T[c].a[i], T[c].a[fa[i]]);
}
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v), add(v, u);
}
for (int i = 1; i <= n; i++) {
scanf("%d", &col[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%d", &w[i]);
}
dfs(1, 0);
init();
scanf("%d", &m);
for (int i = 1; i <= m; i++) {
int opt, u;
scanf("%d%d", &opt, &u);
int &c = col[u];
if (!opt) {
printf("%d\n", T[c].query(T[c].a[u]));
} else if (opt == 1) {
T[c].cut(T[c].a[u], T[c].a[fa[u]]);
c ^= 1;
T[c].link(T[c].a[u], T[c].a[fa[u]]);
} else {
int w;
scanf("%d", &w);
for (int j = 0; j <= 1; j++) {
T[j].access(T[j].a[u]);
T[j].splay(T[j].a[u]);
T[j].a[u]->val = w;
T[j].a[u]->pushup();
}
}
}
return 0;
}